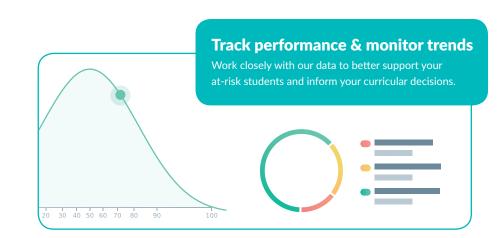
AMBOSS FOR INSTITUTIONS

amboss.com

Discover the comprehensive resource students love for all of medical school



Digital Library: Read & reference key curricular content

- Comprehensive collection of pre-clinical and clinical learning material designed to support both exam prep and applied clinical skills
- 17,000+ searchable medical terms and over 200,000 cross-links between topics
- Up-to-date, scientifically sourced, and portable

Advanced Qbank: Effective NBME[®] Step & Shelf prep

- 4,700+ exam-style practice questions cover relevant topics strategically
- Unique clinical vignettes with sophisticated explanations challenge and teach students
- Detailed performance analytics guide students towards personalized study goals
- Teaches critical thinking skills for patient care in practice

University features

Educators can curate sets of questions from the AMBOSS Qbank and assign them with corresponding Learning Cards to students.

	enosis in the left anterior descending ar enesis of this patient's coronary conditi		ollowing is	the most		Pat 1. <u>Ch</u>
		© VIEW	() LISTS	D FEEDBA	ACK	2. <mark>En</mark>
1771	acute, crushing substernal chest pain, diaphoresi: The angiography showing a stenosis of the left a y atherosclerosis.		-			0
A Intimal smooth muscle o	ell migration			1%	-	•
B Intimal monocyte infiltra	ation			1%	-	3. Inf 4. Ma
c Platelet activation				2%	-	5. Fo
D Low density lipoprotein	oxidation			12%	-	6. Lip pla
~				69%		7. Inf
lycation end-products) dam nflammation and invasion of nacrophages, which then for	<u>elerosis</u> begins with an external factor i aging the endothelium, which increase smooth muscle cells into the tunica in m foam cells by taking up cholesterol i	s adhesiveness and tima. Inflammatory from oxidized low-d	leads to lo cytokines lensity lipi	advanced ocal attract ds. These		fib car 8. Pla occ
The development of <u>atheros</u> glycation end-products) dam nflammation and invasion of <u>nacrophages</u> , which then for <u>oam cells</u> accumulate to form	clerosis begins with an external factor aging the endothelium, which increase smooth muscle cells into the tunica in	s adhesiveness and tima. Inflammatory rom oxidized low-d sions). Finally, <u>colla</u>	leads to lo cytokines lensity lipi	advanced ocal attract ds. These		caj 8. Pla occ Co
The development of <u>atheros</u> glycation end-products) dam nflammation and invasion of <u>nacrophages</u> , which then for <u>oam cells</u> accumulate to form	Elerosis begins with an external factor aging the endothelium, which increase smooth muscle cells into the tunica in m foam cells by taking up cholesterol i n fatty streaks (early atherosclerotic le	s adhesiveness and tima. Inflammatory rom oxidized low-d sions). Finally, <u>colla</u>	leads to lo cytokines lensity lipi	advanced ocal attract ds. These		car 8. Pla
The development of <u>atheros</u> glycation end-products) dam nflammation and invasion of <u>nacrophages</u> , which then for <u>oam cells</u> accumulate to form	Elerosis begins with an external factor i aging the endothelium, which increase smooth muscle cells into the tunica in m foam cells by taking up cholesterol i n <u>fatty streaks</u> (early atherosclerotic le SMCs form these <u>fatty streaks</u> into a <u>f</u>	s adhesiveness and tima. Inflammatory rom oxidized low-d sions). Finally, <u>colla</u>	leads to lo cytokines lensity lipi	advanced ocal attract ds. These ction by		Cap 8. Pla occ Con • Ab
The development of atherosystem (ycation end-products) dam (flammation and invasion of nacrophages, which then for oam cells accumulate to for ipid-laden macrophages and (ipid-laden macrophages) (i) Intimal foam cell accume	elerosis begins with an external factor i aging the endothelium, which increase smooth muscle cells into the tunica in m foam cells by taking up cholesterol 1 n <u>fatty streaks</u> (early atherosclerotic le SMCs form these fatty streaks into a f	s adhesiveness and tima. Inflammatory rom oxidized low-d sions). Finally, <u>colla</u>	leads to lo cytokines lensity lipi	advanced ocal attract ds. These ction by FEEDBACI		Col Col Col Ab Portorial Col Col Col Col Col Col Col Co
The development of atherose (yecation end-products) dam inflammation and invasion of nacrophages, which then for oam cells accumulate to for ipid-laden macrophages and ipid-laden macr	clerosis begins with an external factor i aging the endothelium, which increase smooth muscle cells into the tunica in m foam cells by taking up cholesterol 1 in fatty streaks (early atherosclerotic le SMCs form these fatty streaks into a f	s adhesiveness and tima. Inflammatory rom oxidized low-do sions). Finally, collaj brous plaque.	leads to lo cytokines lensity lipi	advanced ocal attract ds. These ction by FEEDBACI 10% 4%		cay 8. Pla oc: • Co • Ab • Co • Po • Ca

Reinforce skills & understanding

Every case-based multiple choice question breaks down suggested stem highlights, clinical reasoning advice, and unique explanations for each answer choice.

Knowledge just a click away

Open up the AMBOSS Knowledge Library side by side with questions and review past mistakes, hone in on high-yield content points, or explore topics in depth.

High-Yield 💽 Learning Radar 💽 Key knowledge 💽
Atherosclerosis > Pathophysiology
Pathogenesis of atherosclerosis
1. Chronic stress on the endothelium
2. Endothelial dysfunction, which leads to
 Invasion of inflammatory cells (mainly monocytes and lymphocytes) through the disrupted endothelial barrier
 Adhesion of platelets to the damaged vessel wall → platelets release inflammatory mediators (e.g., cytokines) and platelet-derived growth factor (PDGF)
 PDGF stimulates migration and proliferation of smooth muscle cells (SCM) in the tunica intima and mediates differentiation of fibroblasts into myofibroblasts
3. Inflammation of the vessel wall
4. Macrophages and SMCs ingest cholesterol from oxidized LDL and transform into foam cells
5. Foam cells accumulate to form fatty streaks (early atherosclerotic lesions).
 Lipid-laden macrophages and SMCs produce extracellular matrix (e.g., collagen) → development of a fibrous plaque (atheroma)
7. Inflammatory cells in the <u>atheroma</u> (e.g., macrophages) secrete matrix metalloproteinases – weakening of the fibrous cap of the <u>plaque</u> due to the breakdown of <u>extracellular matrix</u> – minor stress ruptures the fibrous cap
8. <u>Plaque</u> rupture \rightarrow exposure of thrombogenic material (e.g., <u>collagen</u>) \rightarrow <u>thrombus</u> formation with vascular
occlusion or spreading of thrombogenic material
ار کا ایک ایک ایک ایک ایک ایک ایک ایک ایک
Common sites (in order of frequency)
Abdominal aorta
Coronary arteries
Popliteal arteries
Carotid arteries
Atherosclerotic diseases
arterial aneurysm or dissection
Demand-supply mismatch: coronary heart disease; peripheral artery disease; subcortical vascular dementia
Thrombosis: acute coronary syndrome, stroke
- Renovascular hypertension: atherosclerosis of the renal artery \rightarrow activation of the renin-angiotensin-aldosterone system

Videos, illustrations, overlays

The Library contains thousands of high-quality images, flowcharts, and interactive media (like guizzes and overlays) which boost the learning experience and help train the clinical eye.

Partner with AMBOSS to improve your students' success

- Founded and managed by doctors
- 250+ AMBOSS employees support 500,000 users worldwide
- Institutional partnerships with dozens of universities in the USA and faculties in over 20 countries
- Customize your license for an integrated curriculum and work with our analytics to improve your students' scores

Contact us for trial access & next steps: institutions@amboss.com

Berlin • Cologne • New York

